Aims: Determination of branching fractions, cross sections and thermal rate coefficients for the dissociative recombination of CD3OCD2+ (0-0.3 eV) and (CD3)2OD+ (0-0.2 eV) at the low relative kinetic energies encountered in the interstellar medium.
Methods: The measurements were carried out using merged electron and ion beams at the CRYRING storage ring, Stockholm, Sweden.
Results: For (CD3)2OD+ we have experimentally determined the branching fraction for ejection of a single hydrogen atom in the DR process to be maximally 7% whereas 49% of the reactions involve the break up of the COC chain into two heavy fragments and 44% ruptures both C-O bonds. The DR of CD3OCD2+ is dominated by fragmentation of the COC chain into two heavy fragments. The measured thermal rate constants and cross sections are k(T) =1.7 ± 0.5 × 10−6(T/300)−0.77±0.01 cm3s−1, σ= 1.2 ± 0.4 × 10−15(Ecm[eV])−1.27 ± 0.01 cm2 and k(T) = 1.7 ± 0.6 × 10−6(T/300)−0.70±0.02 cm3s−1,σ= 1.7 ± 0.6 × 10−15(Ecm[eV])−1.20±0.02 cm2 for CD3OCD2+ and (CD3)2OD+, respectively.