Change search
Refine search result
1234567 1 - 50 of 1803
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Abdalla, Elcio
    et al.
    Arendse, Nikki
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Di Valentino, Eleonora
    Niedermann, Florian
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
    Zumalacárregui, Miguel
    Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies2022In: Journal of High Energy Astrophysics, ISSN 2214-4048, E-ISSN 2214-4056, Vol. 34, p. 49-211Article, review/survey (Refereed)
    Abstract [en]

    The standard Λ Cold Dark Matter (ΛCDM) cosmological model provides a good description of a wide range of astrophysical and cosmological data. However, there are a few big open questions that make the standard model look like an approximation to a more realistic scenario yet to be found. In this paper, we list a few important goals that need to be addressed in the next decade, taking into account the current discordances between the different cosmological probes, such as the disagreement in the value of the Hubble constant H0, the σ8–S8 tension, and other less statistically significant anomalies. While these discordances can still be in part the result of systematic errors, their persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the necessity for new physics or generalisations beyond the standard model. In this paper, we focus on the 5.0σ tension between the Planck CMB estimate of the Hubble constant H0 and the SH0ES collaboration measurements. After showing the H0 evaluations made from different teams using different methods and geometric calibrations, we list a few interesting new physics models that could alleviate this tension and discuss how the next decade's experiments will be crucial. Moreover, we focus on the tension of the Planck CMB data with weak lensing measurements and redshift surveys, about the value of the matter energy density Ωm, and the amplitude or rate of the growth of structure (σ8,fσ8). We list a few interesting models proposed for alleviating this tension, and we discuss the importance of trying to fit a full array of data with a single model and not just one parameter at a time. Additionally, we present a wide range of other less discussed anomalies at a statistical significance level lower than the H0–S8 tensions which may also constitute hints towards new physics, and we discuss possible generic theoretical approaches that can collectively explain the non-standard nature of these signals. Finally, we give an overview of upgraded experiments and next-generation space missions and facilities on Earth that will be of crucial importance to address all these open questions.

  • 2. Abdel-Aty, M.
    et al.
    Larson, Jonas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
    Eleuch, H.
    Obada, A. S. F.
    Multi-particle entanglement of charge qubits coupled to a nanoresonator2011In: Physica. E, Low-Dimensional systems and nanostructures, ISSN 1386-9477, E-ISSN 1873-1759, Vol. 43, no 9, p. 1625-1630Article in journal (Refereed)
    Abstract [en]

    The dynamics of charge qubits coupled to a nanomechanical resonator under the influence of both a phonon bath in contact with the resonator and irreversible decay of the qubits is considered. The focus of our analysis is devoted to multi-particle entanglement and the effects arising from the coupling to the reservoir. Even in the presence of the reservoirs, the inherent entanglement is found to be rather robust. Due to this fact, together with control of system parameters, the system may, therefore, be especially suited for quantum information processing. Our findings also shed light on the evolution of open quantum many-body systems. For instance, due to intrinsic qubit-qubit couplings our model is related to a driven XY spin model.

  • 3. Abdollahi, S.
    et al.
    Acero, F.
    Ackermann, M.
    Ajello, M.
    Atwood, W. B.
    Axelsson, Magnus
    Stockholm University, Faculty of Science, Department of Physics. KTH Royal Institute of Technology, Sweden.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Becerra Gonzalez, J.
    Bellazzini, R.
    Berretta, A.
    Bissaldi, E.
    Blandford, R. D.
    Bloom, E. D.
    Bonino, R.
    Bottacini, E.
    Brandt, T. J.
    Bregeon, J.
    Bruel, P.
    Buehler, R.
    Burnett, T. H.
    Buson, S.
    Cameron, R. A.
    Caputo, R.
    Caraveo, P. A.
    Casandjian, J. M.
    Castro, D.
    Cavazzuti, E.
    Charles, E.
    Chaty, S.
    Chen, S.
    Cheung, C. C.
    Chiaro, G.
    Ciprini, S.
    Cohen-Tanugi, J.
    Cominsky, L. R.
    Coronado-Blazquez, J.
    Costantin, D.
    Cuoco, A.
    Cutini, S.
    D'Ammando, F.
    DeKlotz, M.
    Luque, P. de la Tone
    de Palma, F.
    Desai, A.
    Digel, S. W.
    Di Lalla, N.
    Di Mauro, M.
    Di Venere, L.
    Dominguez, A.
    Dumora, D.
    Dirirsa, F. Fana
    Fegan, S. J.
    Ferrara, E. C.
    Franckowiak, A.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gaspanini, D.
    Giglietto, N.
    Giommi, P.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Green, D.
    Grenier, I. A.
    Griffin, S.
    Grondin, M-H
    Grove, J. E.
    Guiriec, S.
    Harding, A. K.
    Hayashi, K.
    Hays, E.
    Hewitt, J. W.
    Horan, D.
    Jóhannesson, Guðlaugur
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). University of Iceland, Iceland.
    Johnson, T. J.
    Kamae, T.
    Kerr, M.
    Kocevski, D.
    Kovac'evic, M.
    Kuss, M.
    Landriu, D.
    Larsson, S.
    Latronico, L.
    Lemoine-Goumard, M.
    Li, J.
    Liodakis, I
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Maldera, S.
    Malyshev, D.
    Manfreda, A.
    Marchesini, J.
    Marcotulli, L.
    Marti-Devesa, G.
    Martin, P.
    Massaro, F.
    Mazziotta, M. N.
    McEnery, J. E.
    Mereu, I
    Meyer, M.
    Michelson, P. F.
    Mirabal, N.
    Mizuno, T.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I.
    Negro, M.
    Nuss, E.
    Ojha, R.
    Omodei, N.
    Orienti, M.
    Orlando, E.
    Ormes, J. F.
    Palatiello, M.
    Paliya, V. S.
    Paneque, D.
    Pei, Z.
    Pena-Herazo, H.
    Perkins, J. S.
    Persic, M.
    Pesce-Rollms, M.
    Petrosian, V
    Petrov, L.
    Piron, F.
    Poon, H.
    Porter, T. A.
    Principe, G.
    Raino, S.
    Rando, R.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Remy, Q.
    Reposeur, T.
    Romani, R. W.
    Parkinson, P. M. Saz
    Schinzel, F. K.
    Serini, D.
    Sgro, C.
    Siskind, E. J.
    Smith, D. A.
    Spandre, G.
    Spinelli, P.
    Strong, A. W.
    Suson, D. J.
    Tajima, H.
    Takahashi, M. N.
    Tak, D.
    Thayer, J. B.
    Thompson, D. J.
    Tibaldo, L.
    Torres, D. F.
    Torresi, E.
    Valverde, J.
    Van Klaveren, B.
    van Zyl, P.
    Wood, K.
    Yassine, M.
    Zaharijas, G.
    Fermi Large Area Telescope Fourth Source Catalog2020In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 247, no 1, article id 33Article in journal (Refereed)
    Abstract [en]

    We present the fourth Fermi Large Area Telescope catalog (4FGL) of gamma-ray sources. Based on the first eight years of science data from the Fermi Gamma-ray Space Telescope mission in the energy range from 50 MeV to 1 TeV, it is the deepest yet in this energy range. Relative to the 3FGL catalog, the 4FGL catalog has twice as much exposure as well as a number of analysis improvements, including an updated model for the Galactic diffuse gamma-ray emission, and two sets of light curves (one-year and two-month intervals). The 4FGL catalog includes 5064 sources above 4 sigma significance, for which we provide localization and spectral properties. Seventy-five sources are modeled explicitly as spatially extended, and overall, 358 sources are considered as identified based on angular extent, periodicity, or correlated variability observed at other wavelengths. For 1336 sources, we have not found plausible counterparts at other wavelengths. More than 3130 of the identified or associated sources are active galaxies of the blazar class, and 239 are pulsars.

  • 4. Abdollahi, S.
    et al.
    Acero, F.
    Ackermann, M.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bellazzini, R.
    Berenji, B.
    Berretta, A.
    Bissaldi, E.
    Blandford, R. D.
    Bonino, R.
    Bruel, P.
    Buson, S.
    Cameron, R. A.
    Caputo, R.
    Caraveo, P. A.
    Castro, D.
    Chiaro, G.
    Cibrario, N.
    Ciprini, S.
    Coronado-Blázquez, J.
    Crnogorcevic, M.
    Cutini, S.
    D'Ammando, F.
    De Gaetano, S.
    Di Lalla, N.
    Dirirsa, F.
    Di Venere, L.
    Domínguez, A.
    Fegan, S. J.
    Fiori, A.
    Fleischhack, H.
    Franckowiak, A.
    Fukazawa, Y.
    Fusco, P.
    Gammaldi, V
    Gargano, F.
    Gasparrini, D.
    Giacchino, F.
    Giglietto, N.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Green, D.
    Grenier, I. A.
    Grondin, M.-H.
    Guiriec, S.
    Gustafsson, M.
    Harding, A. K.
    Hays, E.
    Hewitt, J. W.
    Horan, D.
    Hou, X.
    Jóhannesson, Guðlaugur
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). University of Iceland, Iceland.
    Kayanoki, T.
    Kerr, M.
    Kuss, M.
    Larsson, S.
    Latronico, L.
    Lemoine-Goumard, M.
    Li, J.
    Longo, F.
    Loparco, F.
    Lubrano, P.
    Maldera, S.
    Malyshev, D.
    Manfreda, A.
    Martí-Devesa, G.
    Mazziotta, M. N.
    Mereu, I
    Michelson, P. F.
    Mirabal, N.
    Mitthumsiri, W.
    Mizuno, T.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Nuss, E.
    Omodei, N.
    Orienti, M.
    Orlando, E.
    Ormes, J. F.
    Paneque, D.
    Pei, Z.
    Persic, M.
    Pesce-Rollins, M.
    Pillera, R.
    Poon, H.
    Porter, T. A.
    Principe, G.
    Rainò, S.
    Rando, R.
    Rani, B.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Sánchez-Conde, M.
    Parkinson, P. M. Saz
    Scotton, L.
    Serini, D.
    Sgrò, C.
    Siskind, E. J.
    Spandre, G.
    Spinelli, P.
    Sueoka, K.
    Suson, D. J.
    Tajima, H.
    Tak, D.
    Thayer, J. B.
    Torres, D. F.
    Troja, E.
    Valverde, J.
    Wadiasingh, Z.
    Wood, K.
    Zaharijas, G.
    Search for New Cosmic-Ray Acceleration Sites within the 4FGL Catalog Galactic Plane Sources2022In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 933, no 2, article id 204Article in journal (Refereed)
    Abstract [en]

    Cosmic rays are mostly composed of protons accelerated to relativistic speeds. When those protons encounter interstellar material, they produce neutral pions, which in turn decay into gamma-rays. This offers a compelling way to identify the acceleration sites of protons. A characteristic hadronic spectrum, with a low-energy break around 200 MeV, was detected in the gamma-ray spectra of four supernova remnants (SNRs), IC 443, W44, W49B, and W51C, with the Fermi Large Area Telescope. This detection provided direct evidence that cosmic-ray protons are (re-)accelerated in SNRs. Here, we present a comprehensive search for low-energy spectral breaks among 311 4FGL catalog sources located within 5° from the Galactic plane. Using 8 yr of data from the Fermi Large Area Telescope between 50 MeV and 1 GeV, we find and present the spectral characteristics of 56 sources with a spectral break confirmed by a thorough study of systematic uncertainty. Our population of sources includes 13 SNRs for which the proton–proton interaction is enhanced by the dense target material; the high-mass gamma-ray binary LS I+61 303; the colliding wind binary η Carinae; and the Cygnus star-forming region. This analysis better constrains the origin of the gamma-ray emission and enlarges our view to potential new cosmic-ray acceleration sites.

  • 5. Abdollahi, S.
    et al.
    Acero, F.
    Baldini, L.
    Ballet, J.
    Bastieri, D.
    Bellazzini, R.
    Berenji, B.
    Berretta, A.
    Bissaldi, E.
    Blandford, R. D.
    Bloom, E.
    Bonino, R.
    Brill, A.
    Britto, R. J.
    Bruel, P.
    Burnett, T. H.
    Buson, S.
    Cameron, R. A.
    Caputo, R.
    Caraveo, P. A.
    Castro, D.
    Chaty, S.
    Cheung, C. C.
    Chiaro, G.
    Cibrario, N.
    Ciprini, S.
    Coronado-Blazquez, J.
    Crnogorcevic, M.
    Cutini, S.
    D'Ammando, F.
    De Gaetano, S.
    Digel, S. W.
    Di Lalla, N.
    Dirirsa, F.
    Di Venere, L.
    Dominguez, A.
    Fallah Ramazani, V.
    Fegan, S. J.
    Ferrara, E. C.
    Fiori, A.
    Fleischhack, H.
    Franckowiak, A.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Galanti, G.
    Gammaldi, V.
    Gargano, F.
    Garrappa, S.
    Gasparrini, D.
    Giacchino, F.
    Giglietto, N.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Green, D.
    Grenier, I. A.
    Grondin, M. -H.
    Guillemot, L.
    Guiriec, S.
    Gustafsson, M.
    Harding, A. K.
    Hays, E.
    Hewitt, J. W.
    Horan, D.
    Hou, X.
    Jóhannesson, Guðlaugur
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). University of Iceland, Iceland.
    Karwin, C.
    Kayanoki, T.
    Kerr, M.
    Kuss, M.
    Landriu, D.
    Larsson, S.
    Latronico, L.
    Lemoine-Goumard, M.
    Li, J.
    Liodakis, I.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lubrano, P.
    Maldera, S.
    Malyshev, D.
    Manfreda, A.
    Marti-Devesa, G.
    Mazziotta, M. N.
    Mereu, I.
    Meyer, M.
    Michelson, P. F.
    Mirabal, N.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Negro, M.
    Nuss, E.
    Omodei, N.
    Orienti, M.
    Orlando, E.
    Paneque, D.
    Pei, Z.
    Perkins, J. S.
    Persic, M.
    Pesce-Rollins, M.
    Petrosian, V.
    Pillera, R.
    Poon, H.
    Porter, T. A.
    Principe, G.
    Raino, S.
    Rando, R.
    Rani, B.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Sanchez-Conde, M.
    Saz Parkinson, P. M.
    Scotton, L.
    Serini, D.
    Sgro, C.
    Siskind, E. J.
    Smith, D. A.
    Spandre, G.
    Spinelli, P.
    Sueoka, K.
    Suson, D. J.
    Tajima, H.
    Tak, D.
    Thayer, J. B.
    Thompson, D. J.
    Torres, D. F.
    Troja, E.
    Valverde, J.
    Wood, K.
    Zaharijas, G.
    Incremental Fermi Large Area Telescope Fourth Source Catalog2022In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 260, no 2, article id 53Article in journal (Refereed)
    Abstract [en]

    We present an incremental version (4FGL-DR3, for Data Release 3) of the fourth Fermi Large Area Telescope (LAT) catalog of γ-ray sources. Based on the first 12 years of science data in the energy range from 50 MeV to 1 TeV, it contains 6658 sources. The analysis improves on that used for the 4FGL catalog over eight years of data: more sources are fit with curved spectra, we introduce a more robust spectral parameterization for pulsars, and we extend the spectral points to 1 TeV. The spectral parameters, spectral energy distributions, and associations are updated for all sources. Light curves are rebuilt for all sources with 1 yr intervals (not 2 month intervals). Among the 5064 original 4FGL sources, 16 were deleted, 112 are formally below the detection threshold over 12 yr (but are kept in the list), while 74 are newly associated, 10 have an improved association, and seven associations were withdrawn. Pulsars are split explicitly between young and millisecond pulsars. Pulsars and binaries newly detected in LAT sources, as well as more than 100 newly classified blazars, are reported. We add three extended sources and 1607 new point sources, mostly just above the detection threshold, among which eight are considered identified, and 699 have a plausible counterpart at other wavelengths. We discuss the degree-scale residuals to the global sky model and clusters of soft unassociated point sources close to the Galactic plane, which are possibly related to limitations of the interstellar emission model and missing extended sources.

  • 6.
    Abergel, David
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). KTH Royal Institute of Technology, Sweden.
    Excitonic condensation in spatially separated one-dimensional systems2015In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 106, no 21, article id 213103Article in journal (Refereed)
    Abstract [en]

    We show theoretically that excitons can form from spatially separated one-dimensional ground state populations of electrons and holes, and that the resulting excitons can form a quasicondensate. We describe a mean-field Bardeen-Cooper-Schrieffer theory in the low carrier density regime and then focus on the core-shell nanowire giving estimates of the size of the excitonic gap for InAs/GaSb wires and as a function of all the experimentally relevant parameters. We find that optimal conditions for pairing include small overlap of the electron and hole bands, large effective mass of the carriers, and low dielectric constant of the surrounding media. Therefore, one-dimensional systems provide an attractive platform for the experimental detection of excitonic quasicondensation in zero magnetic field.

  • 7.
    Abergel, David S. L.
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
    Robustness of topologically protected transport in graphene-boron nitride lateral heterostructures2017In: Journal of Physics: Condensed Matter, ISSN 0953-8984, E-ISSN 1361-648X, Vol. 29, no 7, article id 075303Article in journal (Refereed)
    Abstract [en]

    Previously, graphene nanoribbons set in lateral heterostructures with hexagonal boron nitride were predicted to support topologically protected states at low energy. We investigate how robust the transport properties of these states are against lattice disorder. We find that forms of disorder that do not couple the two valleys of the zigzag graphene nanoribbon do not impact the transport properties at low bias, indicating that these lateral heterostructures are very promising candidates for chip-scale conducting interconnects. Forms of disorder that do couple the two valleys, such as vacancies in the graphene ribbon, or substantial inclusions of armchair edges at the graphene-hexagonal boron nitride interface will negatively affect the transport. However, these forms of disorder are not commonly seen in current experiments.

  • 8.
    Abergel, David S. L.
    et al.
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
    Edge, Jonathan M.
    Balatsky, Alexander V.
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Los Alamos National Laboratory, USA.
    The role of spin-orbit coupling in topologically protected interface states in Dirac materials2014In: New Journal of Physics, ISSN 1367-2630, E-ISSN 1367-2630, Vol. 16, p. 065012-Article in journal (Refereed)
    Abstract [en]

    We highlight the fact that two-dimensional (2D) materials with Dirac-like low energy band structures and spin-orbit coupling (SOC) will produce linearly dispersing topologically protected Jackiw-Rebbi modes at interfaces where the Dirac mass changes sign. These modes may support persistent spin or valley currents parallel to the interface, and the exact arrangement of such topologically protected currents depends crucially on the details of the SOC in the material. As examples, we discuss buckled 2D hexagonal lattices such as silicene or germanene, and transition metal dichalcogenides such as MoS2.

  • 9.
    Abergel, David S. L.
    et al.
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
    Mucha-Kruczynski, Marcin
    Infrared absorption of closely aligned heterostructures of monolayer and bilayer graphene with hexagonal boron nitride2015In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 92, no 11, article id 115430Article in journal (Refereed)
    Abstract [en]

    We model optical absorption of monolayer and bilayer graphene on hexagonal boron nitride for the case of closely aligned crystal lattices. We show that perturbations with different spatial symmetry can lead to similar absorption spectra. We suggest that a study of the absorption spectra as a function of the doping for an almost completely full first miniband is necessary to extract meaningful information about the moire characteristics from optical absorption measurements and to distinguish between various theoretical proposals for the physically realistic interaction. Also, for bilayer graphene, the ability to compare spectra for the opposite signs of electric-field-induced interlayer asymmetry might provide additional information about the moire parameters.

  • 10. Abolmasov, Pavel
    et al.
    Nättilä, Joonas
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Columbia University, USA; Flatiron Institute, USA.
    Poutanen, Juri
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). University of Turku, Finland; Space Research Institute of the Russian Academy of Sciences, Russia.
    Kilohertz quasi-periodic oscillations from neutron star spreading layers2020In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 638, article id A142Article in journal (Refereed)
    Abstract [en]

    When the accretion disc around a weakly magnetised neutron star (NS) meets the stellar surface, it should brake down to match the rotation of the NS, forming a boundary layer. As the mechanisms potentially responsible for this braking are apparently inefficient, it is reasonable to consider this layer as a spreading layer (SL) with negligible radial extent and structure. We perform hydrodynamical 2D spectral simulations of an SL, considering the disc as a source of matter and angular momentum. Interaction of new, rapidly rotating matter with the pre-existing, relatively slow material co-rotating with the star leads to instabilities capable of transferring angular momentum and creating variability on dynamical timescales. For small accretion rates, we find that the SL is unstable for heating instability that disrupts the initial latitudinal symmetry and produces large deviations between the two hemispheres. This instability also results in breaking of the axial symmetry as coherent flow structures are formed and escape from the SL intermittently. At enhanced accretion rates, the SL is prone to shearing instability and acts as a source of oblique waves that propagate towards the poles, leading to patterns that again break the axial symmetry. We compute artificial light curves of an SL viewed at different inclination angles. Most of the simulated light curves show oscillations at frequencies close to 1 kHz. We interpret these oscillations as inertial modes excited by shear instabilities near the boundary of the SL. Their frequencies, dependence on flux, and amplitude variations can explain the high-frequency pair quasi-periodic oscillations observed in many low-mass X-ray binaries.

  • 11. Abolmasov, Pavel
    et al.
    Poutanen, Juri
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). University of Turku, Finland.
    Gamma-ray opacity of the anisotropic stratified broad-line regions in blazars2017In: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 464, no 1, p. 152-169Article in journal (Refereed)
    Abstract [en]

    The GeV-range spectra of blazars are shaped not only by non-thermal emission processes internal to the relativistic jet but also by external pair-production absorption on the thermal emission of the accretion disc and the broad-line region (BLR). For the first time, we compute here the pair-production opacities in the GeV range produced by a realistic BLR accounting for the radial stratification and radiation anisotropy. Using photoionization modelling with the CLOUDY code, we calculate a series of BLR models of different sizes, geometries, cloud densities, column densities and metallicities. The strongest emission features in the model BLR are Ly alpha and He II Ly alpha. Contribution of recombination continua is smaller, especially for hydrogen, because Ly continuum is efficiently trapped inside the large optical depth BLR clouds and converted to Lyman emission lines and higher order recombination continua. The largest effects on the gamma-ray opacity are produced by the BLR geometry and localization of the gamma-ray source. We show that when the gamma-ray source moves further from the central source, all the absorption details move to higher energies and the overall level of absorption drops because of decreasing incidence angles between the gamma-rays and BLR photons. The observed positions of the spectral breaks can be used to measure the geometry and the location of the gamma-ray emitting region relative to the BLR. Strong dependence on geometry means that the soft photons dominating the pair-production opacity may be actually produced by a different population of BLR clouds than the bulk of the observed broad line emission.

  • 12. Abolmasov, Pavel
    et al.
    Poutanen, Juri
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). University of Turku, Finland; Russian Academy of Sciences, Russia.
    Mechanical model of a boundary layer for the parallel tracks of kilohertz quasi-periodic oscillations in accreting neutron stars2021In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 647, article id A45Article in journal (Refereed)
    Abstract [en]

    Kilohertz-scale quasi-periodic oscillations (kHz QPOs) are a distinct feature of the variability of neutron star low-mass X-ray binaries. Among all the variability modes, they are especially interesting as a probe for the innermost parts of the accretion flow, including the accretion boundary layer (BL) on the surface of the neutron star. All the existing models of kHz QPOs explain only part of their rich phenomenology. Here, we show that some of their properties can be explained by a very simple model of the BL that is spun up by accreting rapidly rotating matter from the disk and spun down by the interaction with the neutron star. In particular, if the characteristic time scales for the mass and the angular momentum transfer from the BL to the star are of the same order of magnitude, our model naturally reproduces the so-called parallel tracks effect, where the QPO frequency is correlated with luminosity at time scales of hours but becomes uncorrelated at time scales of days. The closeness of the two time scales responsible for mass and angular momentum exchange between the BL and the star is an expected outcome of the radial structure of the BL.

  • 13. Ackermann, M.
    et al.
    Ajello, M.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bellazzini, R.
    Bissaldi, E.
    Blandford, R. D.
    Bloom, E. D.
    Bonino, R.
    Bottacini, E.
    Brandt, T. J.
    Bregeon, J.
    Bruel, P.
    Buehler, R.
    Cameron, R. A.
    Caputo, R.
    Caraveo, P. A.
    Castro, D.
    Cavazzuti, E.
    Charles, E.
    Cheung, C. C.
    Chiaro, G.
    Ciprini, S.
    Cohen-Tanugi, J.
    Costantin, D.
    Cutini, S.
    D'Ammando, F.
    de Palma, F.
    Desai, A.
    Di Lalla, N.
    Di Mauro, M.
    Di Venere, L.
    Favuzzi, C.
    Finke, J.
    Franckowiak, A.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Giglietto, N.
    Giordano, F.
    Giroletti, M.
    Green, D.
    Grenier, I. A.
    Guillemot, L.
    Guiriec, S.
    Hays, E.
    Hewitt, J. W.
    Horan, D.
    Jóhannesson, Guðlaugur
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). University of Iceland, Iceland.
    Kensei, S.
    Kuss, M.
    Larsson, S.
    Latronico, L.
    Lemoine-Goumard, M.
    Li, J.
    Longo, F.
    Loparco, F.
    Lovellette, M. N.
    Lubrano, P.
    Magill, J. D.
    Maldera, S.
    Manfreda, A.
    Mazziotta, M. N.
    McEnery, J. E.
    Meyer, M.
    Mizuno, T.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Negro, M.
    Nuss, E.
    Omodei, N.
    Orienti, M.
    Orlando, E.
    Ormes, J. F.
    Palatiello, M.
    Paliya, V. S.
    Paneque, D.
    Perkins, J. S.
    Persic, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Principe, G.
    Raino, S.
    Rando, R.
    Rani, B.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Sgro, C.
    Siskind, E. J.
    Spandre, G.
    Spinelli, P.
    Suson, D. J.
    Tajima, H.
    Thayer, J. B.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Valverde, J.
    Venters, T. M.
    Vogel, M.
    Wood, K.
    Wood, M.
    Zaharijas, G.
    Biteau, J.
    The Search for Spatial Extension in High-latitude Sources Detected by the Fermi Large Area Telescope2018In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 237, no 2, article id 32Article in journal (Refereed)
    Abstract [en]

    We present a search for spatial extension in high-latitude (vertical bar b vertical bar > 5 degrees) sources in recent Fermi point source catalogs. The result is the Fermi High-Latitude Extended Sources Catalog, which provides source extensions (or upper limits thereof) and likelihood profiles for a suite of tested source morphologies. We find 24. extended sources, 19 of which were not previously characterized as extended. These include sources that are potentially associated with supernova remnants and star-forming regions. We also found extended.-ray emission in the vicinity of the Cen. A radio lobes and-at GeV energies for the first time-spatially coincident with the radio emission of the SNR CTA 1, as well as from the Crab Nebula. We also searched for halos around active galactic nuclei, which are predicted from electromagnetic cascades induced by the e(+)e(-) pairs that are deflected in intergalactic magnetic fields. These pairs are produced when gamma-rays interact with background radiation fields. We do not find evidence for extension in individual sources or in stacked source samples. This enables us to place limits on the flux of the extended source components, which are then used to constrain the intergalactic magnetic field to be stronger than 3 x 10(-16) G for a coherence length lambda greater than or similar to 10 kpc, even when conservative assumptions on the source duty cycle are made. This improves previous limits by several orders of magnitude.

  • 14. Ackermann, M.
    et al.
    Ajello, M.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bellazzini, R.
    Bissaldi, E.
    Blandford, R. D.
    Bonino, R.
    Bottacini, E.
    Bregeon, J.
    Bruel, P.
    Buehler, R.
    Burns, E.
    Buson, S.
    Cameron, R. A.
    Caputo, R.
    Caraveo, P. A.
    Cavazzuti, E.
    Chen, S.
    Chiaro, G.
    Ciprini, S.
    Costantin, D.
    Cuoco, A.
    Cutini, S.
    D'Ammando, F.
    Luque, P. de la Torre
    de Palma, F.
    Desai, A.
    Digel, S. W.
    Di Lalla, N.
    Di Mauro, M.
    Di Venere, L.
    Dirirsa, F. Fana
    Favuzzi, C.
    Franckowiak, A.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Giglietto, N.
    Giordano, F.
    Giroletti, M.
    Green, D.
    Grenier, I. A.
    Guillemot, L.
    Guiriec, S.
    Horan, D.
    Jóhannesson, Guðlaugur
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). University of Iceland, Iceland.
    Kuss, M.
    Larsson, S.
    Latronico, L.
    Li, J.
    Liodakis, I.
    Longo, F.
    Loparco, F.
    Lubrano, P.
    Magill, J. D.
    Maldera, S.
    Malyshev, D.
    Manfreda, A.
    Mazziotta, M. N.
    Mereu, I.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Negro, M.
    Nuss, E.
    Orienti, M.
    Orlando, E.
    Palatiello, M.
    Paliya, V. S.
    Paneque, D.
    Persic, M.
    Pesce-Rollins, M.
    Petrosian, V.
    Piron, F.
    Porter, T. A.
    Principe, G.
    Raino, S.
    Rando, R.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Serini, D.
    Sgro, C.
    Siskind, E. J.
    Spandre, G.
    Spinelli, P.
    Suson, D. J.
    Tajima, H.
    Takahashi, M.
    Thayer, J. B.
    Tibaldo, L.
    Torres, D. F.
    Troja, E.
    Venters, T. M.
    Vianello, G.
    Wood, K.
    Yassine, M.
    Zaharijas, G.
    Ammazzalorso, S.
    Fornengo, N.
    Regis, M.
    Unresolved Gamma-Ray Sky through its Angular Power Spectrum2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 121, no 24, article id 241101Article in journal (Refereed)
    Abstract [en]

    The gamma-ray sky has been observed with unprecedented accuracy in the last decade by the Fermi-large area telescope (LAT), allowing us to resolve and understand the high-energy Universe. The nature of the remaining unresolved emission [unresolved gamma-ray background (UGRB)] below the LAT source detection threshold can be uncovered by characterizing the amplitude and angular scale of the UGRB fluctuation field. This Letter presents a measurement of the UGRB autocorrelation angular power spectrum based on eight years of Fermi-LAT Pass 8 data products. The analysis is designed to be robust against contamination from resolved sources and noise systematics. The sensitivity to subthreshold sources is greatly enhanced with respect to previous measurements. We find evidence (with similar to 3.7 sigma significance) that the scenario in which two classes of sources contribute to the UGRB signal is favored over a single class. A double power law with exponential cutoff can explain the anisotropy energy spectrum well, with photon indices of the two populations being 2.55 +/- 0.23 and 1.86 +/- 0.15.

  • 15. Ackley, K.
    et al.
    Amati, L.
    Barbieri, C.
    Bauer, F. E.
    Benetti, S.
    Bernardini, M. G.
    Bhirombhakdi, K.
    Botticella, M. T.
    Branchesi, M.
    Brocato, E.
    Bruun, S. H.
    Bulla, Mattia
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
    Campana, S.
    Cappellaro, E.
    Castro-Tirado, A. J.
    Chambers, K. C.
    Chaty, S.
    Chen, Ting-Wan
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Max-Planck-Institut für Extraterrestrische Physik, Germany.
    Ciolfi, R.
    Coleiro, A.
    Copperwheat, C. M.
    Covino, S.
    Cutter, R.
    D'Ammando, F.
    D'Avanzo, P.
    De Cesare, G.
    D'Elia, V.
    Della Valle, M.
    Denneau, L.
    De Pasquale, M.
    Dhillon, V. S.
    Dyer, M. J.
    Elias-Rosa, N.
    Evans, P. A.
    Eyles-Ferris, R. A. J.
    Fiore, A.
    Fraser, M.
    Fruchter, A. S.
    Fynbo, J. P. U.
    Galbany, L.
    Gall, C.
    Galloway, D. K.
    Getman, F.
    Ghirlanda, G.
    Gillanders, J. H.
    Gomboc, A.
    Gompertz, B. P.
    Gonzalez-Fernandez, C.
    Gonzalez-Gaitan, S.
    Grado, A.
    Greco, G.
    Gromadzki, M.
    Groot, P. J.
    Gutierrez, C. P.
    Heikkila, T.
    Heintz, K. E.
    Hjorth, J.
    Hu, Y.-D.
    Huber, M. E.
    Inserra, C.
    Izzo, L.
    Japelj, J.
    Jerkstrand, Anders
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Jin, Z. P.
    Jonker, P. G.
    Kankare, E.
    Kann, D. A.
    Kennedy, M.
    Kim, S.
    Klose, S.
    Kool, Erik C.
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kotak, R.
    Kuncarayakti, H.
    Lamb, G. P.
    Leloudas, G.
    Levan, A. J.
    Longo, F.
    Lowe, T. B.
    Lyman, J. D.
    Magnier, E.
    Maguire, K.
    Maiorano, E.
    Mandel, I.
    Mapelli, M.
    Mattila, S.
    McBrien, O. R.
    Melandri, A.
    Michalowski, M. J.
    Milvang-Jensen, B.
    Moran, S.
    Nicastro, L.
    Nicholl, M.
    Nicuesa Guelbenzu, A.
    Nuttal, L.
    Oates, S. R.
    O'Brien, P. T.
    Onori, F.
    Palazzi, E.
    Patricelli, B.
    Perego, A.
    Torres, M. A. P.
    Perley, D. A.
    Pian, E.
    Pignata, G.
    Piranomonte, S.
    Poshyachinda, S.
    Possenti, A.
    Pumo, M. L.
    Quirola-Vasquez, J.
    Ragosta, F.
    Ramsay, G.
    Rau, A.
    Rest, A.
    Reynolds, T. M.
    Rosetti, S. S.
    Rossi, A.
    Rosswog, Stephan
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Sabha, N. B.
    Sagués Carracedo, Ana
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Salafia, O. S.
    Salmon, L.
    Salvaterra, R.
    Savaglio, S.
    Sbordone, L.
    Schady, P.
    Schipani, P.
    Schultz, A. S. B.
    Schweyer, Tassilo
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Max-Planck-Institut für Extraterrestrische Physik, Germany.
    Smartt, S. J.
    Smith, K. W.
    Smith, M.
    Sollerman, Jesper
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Srivastav, S.
    Stanway, E. R.
    Starling, R. L. C.
    Steeghs, D.
    Stratta, G.
    Stubbs, C. W.
    Tanvir, N. R.
    Testa, V.
    Thrane, E.
    Tonry, J. L.
    Turatto, M.
    Ulaczyk, K.
    van der Horst, A. J.
    Vergani, S. D.
    Walton, N. A.
    Watson, D.
    Wiersema, K.
    Wiik, K.
    Wyrzykowski, L.
    Yang, Sheng
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Yi, S.-X.
    Young, D. R.
    Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv2020In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 643, article id A113Article in journal (Refereed)
    Abstract [en]

    Context. Gravitational wave (GW) astronomy has rapidly reached maturity, becoming a fundamental observing window for modern astrophysics. The coalescences of a few tens of black hole (BH) binaries have been detected, while the number of events possibly including a neutron star (NS) is still limited to a few. On 2019 August 14, the LIGO and Virgo interferometers detected a high-significance event labelled S190814bv. A preliminary analysis of the GW data suggests that the event was likely due to the merger of a compact binary system formed by a BH and a NS.

    Aims. In this paper, we present our extensive search campaign aimed at uncovering the potential optical and near infrared electromagnetic counterpart of S190814bv. We found no convincing electromagnetic counterpart in our data. We therefore use our non-detection to place limits on the properties of the putative outflows that could have been produced by the binary during and after the merger.

    Methods. Thanks to the three-detector observation of S190814bv, and given the characteristics of the signal, the LIGO and Virgo Collaborations delivered a relatively narrow localisation in low latency - a 50% (90%) credible area of 5 deg(2) (23 deg(2)) - despite the relatively large distance of 26752 Mpc. ElectromagNetic counterparts of GRAvitational wave sources at the VEry Large Telescope collaboration members carried out an intensive multi-epoch, multi-instrument observational campaign to identify the possible optical and near infrared counterpart of the event. In addition, the ATLAS, GOTO, GRAWITA-VST, Pan-STARRS, and VINROUGE projects also carried out a search on this event. In this paper, we describe the combined observational campaign of these groups.

    Results. Our observations allow us to place limits on the presence of any counterpart and discuss the implications for the kilonova (KN), which was possibly generated by this NS-BH merger, and for the strategy of future searches. The typical depth of our wide-field observations, which cover most of the projected sky localisation probability (up to 99.8%, depending on the night and filter considered), is r similar to 22 (resp. K similar to 21) in the optical (resp. near infrared). We reach deeper limits in a subset of our galaxy-targeted observations, which cover a total similar to 50% of the galaxy-mass-weighted localisation probability. Altogether, our observations allow us to exclude a KN with large ejecta mass M greater than or similar to 0.1 M-circle dot to a high (> 90%) confidence, and we can exclude much smaller masses in a sub-sample of our observations. This disfavours the tidal disruption of the neutron star during the merger.

    Conclusions. Despite the sensitive instruments involved in the campaign, given the distance of S190814bv, we could not reach sufficiently deep limits to constrain a KN comparable in luminosity to AT 2017gfo on a large fraction of the localisation probability. This suggests that future (likely common) events at a few hundred megaparsecs will be detected only by large facilities with both a high sensitivity and large field of view. Galaxy-targeted observations can reach the needed depth over a relevant portion of the localisation probability with a smaller investment of resources, but the number of galaxies to be targeted in order to get a fairly complete coverage is large, even in the case of a localisation as good as that of this event.

  • 16. Adam, R.
    et al.
    Ade, P. A. R.
    Aghanim, N.
    Alves, M. I. R.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartlett, J. G.
    Bartolo, N.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chary, R. -R.
    Chiang, H. C.
    Christensen, P. R.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Dickinson, C.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Ghosh, T.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Helou, G.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, F.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Kneissl, R.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Le Jeune, M.
    Leahy, J. P.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Marshall, D. J.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Orlando, E.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paladini, R.
    Paoletti, D.
    Partridge, B.
    Pasian, F.
    Patanchon, G.
    Pearson, T. J.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Reach, W. T.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Strong, A. W.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Tuovinen, J.
    Umana, G.
    Valenziano, L.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Wilkinson, A.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck 2015 results X. Diffuse component separation: Foreground maps2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A10Article in journal (Refereed)
    Abstract [en]

    Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps and the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7: 5 and 1 degrees. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4pK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100-353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future.

  • 17. Adam, R.
    et al.
    Ade, P. A. R.
    Aghanim, N.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartlett, J. G.
    Bartolo, N.
    Basak, S.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Casaponsa, B.
    Castex, G.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chary, R-R.
    Chiang, H. C.
    Christensen, P. R.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Dickinson, C.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fantaye, Y.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Francescht, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Ghosh, T.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Helou, G.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Kneissl, R.
    Knoche, J.
    Krachmalnicoff, N.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Le Jenne, M.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Marshall, D. J.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Molinari, D.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paladini, R.
    Paoletti, D.
    Pasian, F.
    Patanchon, G.
    Pearson, T. J.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Racine, B.
    Reach, W. T.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Trombetti, T.
    Tucci, M.
    Tuovinen, J.
    Valenziano, L.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck 2015 results IX. Diffuse component separation: CMB maps2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A9Article in journal (Refereed)
    Abstract [en]

    We present foreground-reduced cosmic microwave background (CMB) maps derived from the full Planck data set in both temperature and polarization. Compared to the corresponding Planck 2013 temperature sky maps, the total data volume is larger by a factor of 3.2 for frequencies between 30 and 70 GHz, and by 1.9 for frequencies between 100 and 857 GHz. In addition, systematic errors in the forms of temperature-topolarization leakage, analogue-to-digital conversion uncertainties, and very long time constant errors have been dramatically reduced, to the extent that the cosmological polarization signal may now be robustly recovered on angular scales l greater than or similar to 40. On the very largest scales, instrumental systematic residuals are still non-negligible compared to the expected cosmological signal, and modes with l < 20 are accordingly suppressed in the current polarization maps by high-pass filtering. As in 2013, four different CMB component separation algorithms are applied to these observations, providing a measure of stability with respect to algorithmic and modelling choices. The resulting polarization maps have rms instrumental noise ranging between 0.21 and 0.27 mu K averaged over 55' pixels, and between 4.5 and 6.1 mu K averaged over 3.'4 pixels. The cosmological parameters derived from the analysis of temperature power spectra are in agreement at the 1 sigma level with the Planck 2015 likelihood. Unresolved mismatches between the noise properties of the data and simulations prevent a satisfactory description of the higher-order statistical properties of the polarization maps. Thus, the primary applications of these polarization maps are those that do not require massive simulations for accurate estimation of uncertainties, for instance estimation of cross-spectra and cross-correlations, or stacking analyses. However, the amplitude of primordial non-Gaussianity is consistent with zero within 2 sigma for all local, equilateral, and orthogonal configurations of the bispectrum, including for polarization E-modes. Moreover, excellent agreement is found regarding the lensing B-mode power spectrum, both internally among the various component separation codes and with the best-fit Planck 2015 Lambda cold dark matter model.

  • 18. Adam, R.
    et al.
    Ade, P. A. R.
    Aghanim, N.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Battaner, E.
    Benabed, K.
    Benoit-Levy, A.
    Bersanelli, M.
    Bielewicz, P.
    Bikmaev, I.
    Bonaldi, A.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Burenin, R.
    Burigana, C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Chiang, H. C.
    Christensen, P. R.
    Churazov, E.
    Colombo, L. P. L.
    Combet, C.
    Comis, B.
    Couchot, F.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Diego, J. M.
    Dole, H.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Elsner, F.
    Ensslin, T. A.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Galeotta, S.
    Ganga, K.
    Genova-Santos, R. T.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Harrison, D. L.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Hornstrup, A.
    Hovest, W.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Keihanen, E.
    Keskitalo, R.
    Khamitov, I.
    Kisner, T. S.
    Kneissl, R.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leonardi, R.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Macias-Perez, J. F.
    Maffei, B.
    Maggio, G.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Norgaard-Nielsen, H. U.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Pagano, L.
    Pajot, F.
    Paoletti, D.
    Pasian, F.
    Perdereau, O.
    Perotto, L.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Ponthieu, N.
    Pratt, G. W.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Stolyarov, V.
    Stompor, R.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Valenziano, L.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wehus, I. K.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results XLIII. Spectral energy distribution of dust in clusters of galaxies2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 596, article id A104Article in journal (Refereed)
    Abstract [en]

    Although infrared (IR) overall dust emission from clusters of galaxies has been statistically detected using data from the Infrared Astronomical Satellite (IRAS), it has not been possible to sample the spectral energy distribution (SED) of this emission over its peak, and thus to break the degeneracy between dust temperature and mass. By complementing the IRAS spectral coverage with Planck satellite data from 100 to 857 GHz, we provide new constraints on the IR spectrum of thermal dust emission in clusters of galaxies. We achieve this by using a stacking approach for a sample of several hundred objects from the Planck cluster sample. This procedure averages out fluctuations from the IR sky, allowing us to reach a significant detection of the faint cluster contribution. We also use the large frequency range probed by Planck, together with component-separation techniques, to remove the contamination from both cosmic microwave background anisotropies and the thermal Sunyaev-Zeldovich effect (tSZ) signal, which dominate at v <= 353 GHz. By excluding dominant spurious signals or systematic effects, averaged detections are reported at frequencies 353 GHz <= v <= 5000 GHz. We confirm the presence of dust in clusters of galaxies at low and intermediate redshifts, yielding an SED with a shape similar to that of the Milky Way. Planck's resolution does not allow us to investigate the detailed spatial distribution of this emission (e.g. whether it comes from intergalactic dust or simply the dust content of the cluster galaxies), but the radial distribution of the emission appears to follow that of the stacked SZ signal, and thus the extent of the clusters. The recovered SED allows us to constrain the dust mass responsible for the signal and its temperature.

  • 19. Adam, R.
    et al.
    Ade, P. A. R.
    Alves, M. I. R.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Battaner, E.
    Benabed, K.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Chiang, H. C.
    Christensen, P. R.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Dickinson, C.
    Diego, J. M.
    Dolag, K.
    Dore, O.
    Ducout, A.
    Dupac, X.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Ferriere, K.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Galeotta, S.
    Ganga, K.
    Ghosh, T.
    Giard, M.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Harrison, D. L.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hobson, M.
    Hornstrup, A.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leahy, J. P.
    Leonardi, R.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Norgaard-Nielsen, H. U.
    Oppermann, N.
    Orlando, E.
    Pagano, L.
    Pajot, F.
    Paladini, R.
    Paoletti, D.
    Pasian, F.
    Perotto, L.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Ponthieu, N.
    Pratt, G. W.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Scott, D.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Strong, A. W.
    Sudiwala, R.
    Sunyaev, R.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Valenziano, L.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results XLII. Large-scale Galactic magnetic fields2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 596, article id A103Article in journal (Refereed)
    Abstract [en]

    Recent models for the large-scale Galactic magnetic fields in the literature have been largely constrained by synchrotron emission and Faraday rotation measures. We use three different but representative models to compare their predicted polarized synchrotron and dust emission with that measured by the Planck satellite. We first update these models to match the Planck synchrotron products using a common model for the cosmic-ray leptons. We discuss the impact on this analysis of the ongoing problems of component separation in the Planck microwave bands and of the uncertain cosmic-ray spectrum. In particular, the inferred degree of ordering in the magnetic fields is sensitive to these systematic uncertainties, and we further show the importance of considering the expected variations in the observables in addition to their mean morphology. We then compare the resulting simulated emission to the observed dust polarization and find that the dust predictions do not match the morphology in the Planck data but underpredict the dust polarization away from the plane. We modify one of the models to roughly match both observables at high latitudes by increasing the field ordering in the thin disc near the observer. Though this specific analysis is dependent on the component separation issues, we present the improved model as a proof of concept for how these studies can be advanced in future using complementary information from ongoing and planned observational projects.

  • 20. Adam, R.
    et al.
    Aghanim, N.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Battye, R.
    Benabed, K.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Calabrese, E.
    Cardoso, J. -F.
    Carron, J.
    Chiang, H. C.
    Colombo, L. P. L.
    Combet, C.
    Comis, B.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Di Valentino, E.
    Dickinson, C.
    Diego, J. M.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fantaye, Y.
    Finelli, F.
    Forastieri, F.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frolov, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Genova-Santos, R. T.
    Gerbino, Martina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Università La Sapienza, Italy.
    Ghosh, T.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Helou, G.
    Henrot-Versille, S.
    Herranz, D.
    Hivon, E.
    Huang, Z.
    Ilic, S.
    Jaffe, A. H.
    Jones, W. C.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Knox, L.
    Krachmalnicoff, N.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Langer, M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Le Jeune, M.
    Levrier, F.
    Lewis, A.
    Liguori, M.
    Lilje, P. B.
    Lopez-Caniego, M.
    Ma, Y. -Z.
    Macias-Perez, J. F.
    Maggio, G.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Matarrese, S.
    Mauri, N.
    McEwen, J. D.
    Meinhold, P. R.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Miville-Deschenes, M. -A.
    Molinari, D.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Moss, A.
    Naselsky, P.
    Natoli, P.
    Oxborrow, C. A.
    Pagano, L.
    Paoletti, D.
    Partridge, B.
    Patanchon, G.
    Patrizii, L.
    Perdereau, O.
    Perotto, L.
    Pettorino, V.
    Piacentini, F.
    Plaszczynski, S.
    Polastri, L.
    Polenta, G.
    Puget, J. -L
    Rachen, J. P.
    Racine, B.
    Reinecke, M.
    Remazeilles, M.
    Renzi, A.
    Rocha, G.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Ruiz-Granados, B.
    Salvati, L.
    Sandri, M.
    Savelainen, M.
    Scott, D.
    Sirri, G.
    Sunyaev, R.
    Suur-Uski, A. -S.
    Tauber, J. A.
    Tenti, M.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Trombetti, T.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Vittorio, N.
    Wandelt, B. D.
    Wehus, I. K.
    White, M.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results XLVII. Planck constraints on reionization history2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 596, article id A108Article in journal (Refereed)
    Abstract [en]

    We investigate constraints on cosmic reionization extracted from the Planck cosmic microwave background (CMB) data. We combine the Planck CMB anisotropy data in temperature with the low-multipole polarization data to fit Lambda CDM models with various parameterizations of the reionization history. We obtain a Thomson optical depth tau = 0.058 +/- 0.012 for the commonly adopted instantaneous reionization model. This confirms, with data solely from CMB anisotropies, the low value suggested by combining Planck 2015 results with other data sets, and also reduces the uncertainties. We reconstruct the history of the ionization fraction using either a symmetric or an asymmetric model for the transition between the neutral and ionized phases. To determine better constraints on the duration of the reionization process, we also make use of measurements of the amplitude of the kinetic Sunyaev-Zeldovich (kSZ) effect using additional information from the high-resolution Atacama Cosmology Telescope and South Pole Telescope experiments. The average redshift at which reionization occurs is found to lie between z = 7.8 and 8.8, depending on the model of reionization adopted. Using kSZ constraints and a redshift-symmetric reionization model, we find an upper limit to the width of the reionization period of Delta z < 2.8. In all cases, we find that the Universe is ionized at less than the 10% level at redshifts above z similar or equal to 10. This suggests that an early onset of reionization is strongly disfavoured by the Planck data. We show that this result also reduces the tension between CMB-based analyses and constraints from other astrophysical sources.

  • 21. Adam, R.
    et al.
    Gerbino, Martina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Università La Sapienza, Italy.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Lawrence, C. R.
    Zonca, A.
    Planck 2015 results I. Overview of products and scientific results2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A1Article in journal (Refereed)
    Abstract [en]

    The European Space Agency's Planck satellite, which is dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013. In February 2015, ESA and the Planck Collaboration released the second set of cosmology products based on data from the entire Planck mission, including both temperature and polarization, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the main characteristics of the data and the data products in the release, as well as the associated cosmological and astrophysical science results and papers. The data products include maps of the cosmic microwave background (CMB), the thermal Sunyaev-Zeldovich effect, diffuse foregrounds in temperature and polarization, catalogues of compact Galactic and extragalactic sources (including separate catalogues of Sunyaev-Zeldovich clusters and Galactic cold clumps), and extensive simulations of signals and noise used in assessing uncertainties and the performance of the analysis methods. The likelihood code used to assess cosmological models against the Planck data is described, along with a CMB lensing likelihood. Scientific results include cosmological parameters derived from CMB power spectra, gravitational lensing, and cluster counts, as well as constraints on inflation, non-Gaussianity, primordial magnetic fields, dark energy, and modified gravity, and new results on low-frequency Galactic foregrounds.

  • 22. Addazi, A.
    et al.
    Alvarez-Muniz, J.
    Alves Batista, R.
    Amelino-Camelia, G.
    Antonelli, V.
    Arzano, M.
    Asorey, M.
    Atteia, J.-L.
    Bahamonde, S.
    Bajardi, F.
    Ballesteros, A.
    Baret, B.
    Barreiros, D. M.
    Basilakos, S.
    Benisty, D.
    Birnholtz, O.
    Blanco-Pillado, J. J.
    Blas, D.
    Bolmont, J.
    Boncioli, D.
    Bosso, P.
    Calcagni, G.
    Capozziello, S.
    Carmona, J. M.
    Cerci, S.
    Chernyakova, M.
    Clesse, S.
    Coelho, J. A. B.
    Colak, S. M.
    Cortes, J. L.
    Das, S.
    D'Esposito, V.
    Demirci, M.
    Di Luca, M. G.
    di Matteo, A.
    Dimitrijevic, D.
    Djordjevic, G.
    Dominis Prester, D.
    Eichhorn, A.
    Ellis, J.
    Escamilla-Rivera, C.
    Fabiano, G.
    Franchino-Viñas, S. A.
    Frassino, A. M.
    Frattulillo, D.
    Funk, S.
    Fuster, A.
    Gamboa, J.
    Gent, A.
    Gergely, L. Á.
    Giammarchi, M.
    Giesel, K.
    Glicenstein, J.-F.
    Gracia-Bondía, J.
    Gracia-Ruiz, R.
    Gubitosi, G.
    Guendelman, E.
    Gutierrez-Sagredo, I.
    Haegel, L.
    Heefer, S.
    Held, A.
    Herranz, F. J.
    Hinderer, T.
    Illana, J. I.
    Ioannisian, A.
    Jetzer, P.
    Joaquim, F. R.
    Kampert, K.-H.
    Karasu Uysal, A.
    Katori, T.
    Kazarian, N.
    Kerszberg, D.
    Kowalski-Glikman, J.
    Kuroyanagi, S.
    Lämmerzahl, C.
    Levi Said, J.
    Liberati, S.
    Lim, E.
    Lobo, I. P.
    López-Moya, M.
    Luciano, G. G.
    Manganaro, M.
    Marcianò, A.
    Martin-Moruno, P.
    Martinez, Manel
    Martinez, Mario
    Martínez-Huerta, H.
    Martínez-Miravé, P.
    Masip, M.
    Mattingly, D.
    Mavromatos, N.
    Mazumdar, A.
    Méndez, F.
    Mercati, F.
    Micanovic, S.
    Mielczarek, J.
    Miller, A. L.
    Milosevic, M.
    Minic, D.
    Miramonti, L.
    Mitsou, V. A.
    Moniz, P.
    Mukherjee, S.
    Nardini, G.
    Navas, S.
    Niechciol, M.
    Nielsen, A. B.
    Obers, Niels A.
    Stockholm University, Nordic Institute for Theoretical Physics (Nordita). University of Copenhagen, Denmark.
    Oikonomou, F.
    Oriti, D.
    Paganini, C. F.
    Palomares-Ruiz, S.
    Pasechnik, R.
    Pasic, V.
    Pérez de los Heros, C.
    Pfeifer, C.
    Pieroni, M.
    Piran, T.
    Platania, A.
    Rastgoo, S.
    Relancio, J. J.
    Reyes, M. A.
    Ricciardone, A.
    Risse, M.
    Rodriguez Frias, M. D.
    Rosati, G.
    Rubiera-Garcia, D.
    Sahlmann, H.
    Sakellariadou, M.
    Salamida, F.
    Saridakis, E. N.
    Satunin, P.
    Schiffer, M.
    Schüssler, F.
    Sigl, G.
    Sitarek, J.
    Solà Peracaula, J.
    Sopuerta, C. F.
    Sotiriou, T. P.
    Spurio, M.
    Staicova, D.
    Stergioulas, N.
    Stoica, S.
    Strišković, J.
    Stuttard, T.
    Sunar Cerci, D.
    Tavakoli, Y.
    Ternes, C. A.
    Terzić, T.
    Thiemann, T.
    Tinyakov, P.
    Torri, M. D. C.
    Tórtola, M.
    Trimarelli, C.
    Trześniewski, T.
    Tureanu, A.
    Urban, F. R.
    Vagenas, E. C.
    Vernieri, D.
    Vitagliano, V.
    Wallet, J.-C.
    Zornoza, J. D.
    Quantum gravity phenomenology at the dawn of the multi-messenger era—A review2022In: Progress in Particle and Nuclear Physics, ISSN 0146-6410, E-ISSN 1873-2224, Vol. 125, article id 103948Article, review/survey (Refereed)
    Abstract [en]

    The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 “Quantum gravity phenomenology in the multi-messenger approach”, is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.

  • 23. Ade, P. A. R.
    et al.
    Aghanim, N.
    Alves, M. I. R.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartlett, J. G.
    Bartolo, N.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chary, R. -R.
    Chiang, H. C.
    Christensen, P. R.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Delouis, J. -M.
    Desert, F. -X.
    Dickinson, C.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Ghosh, T.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Helou, G.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Kneissl, R.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leahy, J. P.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Marshall, D. J.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Orlando, E.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paladini, R.
    Paoletti, D.
    Partridge, B.
    Pasian, F.
    Patanchon, G.
    Pearson, T. J.
    Peel, M.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Reach, W. T.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Strong, A. W.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Tuovinen, J.
    Umana, G.
    Valenziano, L.
    Valiviita, J.
    Van Tent, F.
    Vidal, M.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Watson, R.
    Wehus, I. K.
    Wilkinson, A.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck 2015 results XXV. Diffuse low-frequency Galactic foregrounds2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A25Article in journal (Refereed)
    Abstract [en]

    We discuss the Galactic foreground emission between 20 and 100 GHz based on observations by Planck and WMAP. The total intensity in this part of the spectrum is dominated by free-free and spinning dust emission, whereas the polarized intensity is dominated by synchrotron emission. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison with radio recombination line templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude H alpha emission with our free-free map shows residuals that correlate with dust optical depth, consistent with a fraction (approximate to 30%) of H alpha having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak (in I-v) ranging from below 20 GHz to more than 50 GHz. There is a strong tendency for the spinning dust component near many prominent H Pi regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photo-dissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the Commander solution finds more anomalous microwave emission (AME) than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys, particularly at 5-20 GHz, will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck and WMAP data to make the highest signal-to-noise ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high-latitude polarized emission is associated with distinct large-scale loops and spurs, and we re-discuss their structure. We argue that nearly all the emission at 40 degrees > l > -90 degrees is part of the Loop I structure, and show that the emission extends much further in to the southern Galactic hemisphere than previously recognised, giving Loop I an ovoid rather than circular outline. However, it does not continue as far as the Fermi bubble/microwave haze, making it less probable that these are part of the same structure. We identify a number of new faint features in the polarized sky, including a dearth of polarized synchrotron emission directly correlated with a narrow, roughly 20 degrees long filament seen in H alpha at high Galactic latitude. Finally, we look for evidence of polarized AME, however many AME regions are significantly contaminated by polarized synchrotron emission, and we find a 2 sigma upper limit of 1.6% in the Perseus region.

  • 24. Ade, P. A. R.
    et al.
    Aghanim, N.
    Argueeso, F.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Battaner, E.
    Beichman, C.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Boehringer, H.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Carvalho, P.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chary, R. -R.
    Chiang, H. C.
    Christensen, P. R.
    Clemens, M.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Dickinson, C.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Helou, G.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Kneissl, R.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leahy, J. P.
    Leonardi, R.
    Leon-Tavares, J.
    Lesgourgues, J.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Marshall, D. J.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Negrello, M.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paladini, R.
    Paoletti, D.
    Partridge, B.
    Pasian, F.
    Patanchon, G.
    Pearson, T. J.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Reach, W. T.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rowan-Robinson, M.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Sanghera, H. S.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Spencer, L. D.
    Stolyarov, V.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tornikoski, M.
    Tristram, M.
    Tucci, M.
    Tuovinen, J.
    Turler, M.
    Umana, G.
    Valenziano, L.
    Valiviita, J.
    Van Tent, B.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Walter, B.
    Wandelt, B. D.
    Wehus, I. K.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck 2015 results XXVI. The Second Planck Catalogue of Compact Sources2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A26Article in journal (Refereed)
    Abstract [en]

    The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogues, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalogue. The second ( PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow us to increase the number of objects in the catalogue, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC).

  • 25. Ade, P. A. R.
    et al.
    Aghanim, N.
    Arnaud, M.
    Arroja, F.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Chamballu, A.
    Chiang, H. C.
    Chluba, J.
    Christensen, P. R.
    Church, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Diego, J. M.
    Dolag, K.
    Dole, H.
    Donzelli, S.
    Dore, A.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Fergusson, J.
    Finelli, F.
    Florido, E.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Helou, G.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kim, J.
    Kisner, T. S.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leahy, J. P.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.